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Abstract— Resiliency and security in critical infrastructure 
control systems in the modern world of cyber terrorism 
constitute a relevant concern. Developing a network security 
system specifically tailored to the requirements of such critical 
assets is of a primary importance. This paper proposes a novel 
learning algorithm for anomaly based network security cyber 
sensor together with its hardware implementation. The presented 
learning algorithm constructs a fuzzy logic rule base modeling 
the normal network behavior. Individual fuzzy rules are 
extracted directly from the stream of incoming packets using an 
online clustering algorithm. This learning algorithm was 
specifically developed to comply with the constrained 
computational requirements of low-cost embedded network 
security cyber sensors. The performance of the system was 
evaluated on a set of network data recorded from an 
experimental test-bed mimicking the environment of a critical 
infrastructure control system. 

Keywords-— Anomaly Detection; Cyber Sensor; Embedded 
Systems; Fuzzy Logic System; Online Clustering;  

I. INTRODUCTION 
Critical infrastructure control systems, typically composed 

of interconnected computer-based stations, exchange crucial 
information via the computer network. These critical 
components, which can be found in systems such as SCADA 
or nuclear power plants, constitute a focus of an increased 
cyber security [1], [2]. Breaking into such systems with 
network intrusion attacks can have severe effects on multiple 
levels, such as security, public safety, industrial or 
economical. The danger is even higher considering that critical 
infrastructures are not immune to these threats and that they 
possibly may be more vulnerable than common information 
technology systems [3]. Therefore, network traffic anomaly 
detection for critical infrastructures is an obvious need [4]. 

Network intrusion detection systems originated in 1980’s 
and in the seminal work of Denning [5], [6]. Generally 
speaking, two kinds of IDS can be found; anomaly detection 
and signature based detection systems. Signature based 
detection system attempt to match the observed behavior 
against a database of known attack signatures. On the other 
hand, an anomaly based detection system seeks deviations 
from the learned model of normal behavior [7], [8]. The 
system builds a representative model exclusively based on the 
previously collected normal behavior. The system is capable 

of detecting novel and dynamically changing intrusion 
instances, assuming that these are substantially different from 
the model of normal behavior. Unfortunately, any normal 
acceptable behavior not included in the training set will likely 
not match the model and generate false alarm. Hence, 
acquiring descriptive training dataset is of a crucial 
importance. The anomaly detection approach is adopted in the 
presented paper. 

Computational intelligence techniques have been 
extensively applied to the problem of network intrusion 
detection [7], [9]. Techniques such as artificial neural 
networks [10]–[13], support vector machines [14], genetic 
algorithms [15], fuzzy logic [16], [17] or unsupervised 
clustering [18]-[20], proved to be powerful learning tools for 
modeling the network behavior. The attractiveness of 
computational intelligence comes from the ability to learn 
from multi-dimensional non-linear data [9]. 

The presented paper proposes a learning algorithm for a 
fuzzy logic based anomaly detection system specifically 
developed for the constrained resources of embedded network 
security cyber sensors [21]. A schematic view of the presented 
system is depicted in Fig. 1. Here the implemented cyber 
sensor creates a secure zone around the control system. The 
learning algorithm builds a fuzzy rule base, which describes 
the previously seen normal network communication 
behavioral patterns. This fuzzy rule base is constructed 
directly from the stream of incoming packets using the online 
version of the nearest neighbor clustering algorithm. 
Subsequently, the set of extracted clusters is transformed into 
individual fuzzy rules. Moreover, the algorithm can be re-
trained on newly available normal behavior data, while 

Fig. 1 Schematic diagram of the network security cyber sensor [20]. 



maintaining the previously acquired knowledge. The 
performance of the algorithm was tested on an experimental 
test-bed mimicking the critical infrastructure control system. 

The rest of the paper is structured as follows. Section II 
provides a brief overview of fuzzy logic systems and the 
nearest neighbor clustering algorithm. The considered 
hardware platform for the embedded network security device 
is described in Section III. Section IV and V explain the 
network behavior feature extraction technique and the 
proposed anomaly detection algorithm, respectively. The 
system is experimentally evaluated in Section VI and Section 
VII concludes the paper. 

II. BACKGROUND OVERVIEW 
This section provides a brief background overview of fuzzy 

logic systems and the nearest neighbor clustering algorithm. 

A. Fuzzy Logic Systems 
Fuzzy logic has been originally proposed by Zadeh as a tool 

for dealing with linguistic uncertainty and vagueness 
ubiquitous in the imprecise meaning of words [23]. A Fuzzy 
Logic System (FLS) is composed of four primary parts – input 
fuzzification, fuzzy inference engine, fuzzy rule base and 
output defuzzification, as depicted in Fig. 2. The Mamdani 
FLS considered in this work maintains a fuzzy rule base 
populated with fuzzy linguistic rules in an implicative form. 
Consider rule Rk that is described as follows [24], [25]: 
 
 Rule Rk: IF x1 is kA1 AND … AND xn is k

nA  
               THEN yk is Bk (1)   

Here, symbol k
iA and Bk denote the ith input fuzzy set and 

the output fuzzy set of the kth rule, respectively, n is the 
dimensionality of the input vector x

�
 and yk is the associated 

output variable. Each element of the input vector x
�

 is first 
fuzzified using the respective fuzzy membership function (e.g. 
Gaussian, triangular, trapezoidal, etc.). The fuzzification of 
input value xi into fuzzy set Ai yields a fuzzy membership 
grade )( iA

xk
i

� . Using the minimum t-norm the degree of 

firing of rule Rk can be calculated as: 
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After applying the rule firing strength via the t-norm 

operator to each rule consequent, the output fuzzy sets are 
aggregated using the t-conorm operator (e.g. the maximum 

operator) resulting in a output fuzzy set B. For detailed 
description of the fuzzy inference process refer to [24], [25]. 

In order to obtain the crisp output value, one of the available 
defuzzification techniques is applied. Upon discretizing the 
output domain into N samples, for example the centroid 
defuzzifier can be applied: 
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B. Nearest Neighbor Clustering 
The Nearest Neighbor Clustering (NNC) algorithm is an 

unsupervised clustering technique [9]. The clustering process 
is controlled by an established maximum cluster radius 
parameter. The smaller the radius the more clusters will be 
generated and vice versa. 

Assume an input dataset X composed of N input patterns 
denoted as: 

 � � n
iN xxxX ���
���

,...,,1  (4) 
 
Here, n denotes the dimensionality of the input domain. 

Vector ix
�

 can be expressed as },...,{ 1 n
iii xxx �

�
. 

Each cluster constitutes a prototype of similar instances, 
subject to a specific similarity measure. The Euclidean 
distance similarity measure is considered in this work. Each 
cluster Pi is described by its Center Of Gravity (COG) ic

�
and 

its associated weight wi. The weight wi stores the number of 
patterns previously assigned to cluster Pi. Following this 
notation, cluster Pi can be expressed as: 
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The learning process of the NNC algorithm begins by 

creating an initial cluster P1 at the location of the first input 
pattern 1x

�
. Next, input patterns from dataset X are selected in 

a sequential manner. The nearest prototype from the set of 
available clusters is determined for each instance. For an input 
pattern ix

�
, the nearest cluster Pa is determined using the 

Euclidean distance norm: 
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Here, C denotes the number of currently acquired clusters. 

Using the maximum cluster radius parameter - rad, the input 
pattern ix

�
 is assigned to cluster Pa if the following condition 

holds: � � radxcdist ia �
��

, . In this case, the parameters of cluster 
Pa are updated as: 

 
Fig. 2 Fuzzy logic system.  
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If � � radxcdist ia �

��
, , a new cluster is created at the location 

of input pattern ix
�

, and its weight is set to 1. 

III. EMBEDDED NETWORK SECURITY CYBER SENSOR 
The Tofino embedded network security device, depicted in 

Fig. 3, is manufactured by Byres Security Inc. [22]. Originally, 
the device was developed for pre-emptive threat detection, 
termination and reporting, specifically tailored for the needs of 
SCADA and industrial control systems. Its major advantages 
are primarily its low-cost and ease of deployment in real world 
systems. In the presented work, the Tofino cyber sensor was 
used as an embedded development platform for 
implementation of the proposed anomaly based detection 
learning algorithm.  

 The Tofino platform consists of an Arcom Vulcan single 
board computer. The main processor is an Intel IXP425 
XScale processor running at 533MHz with 64MB of DRAM 
and 32MB of flash memory. The Intel IXP425 XScale is based 
on an ARM V5TE instruction set [26]. Two Ethernet ports are 
provided along with two USB ports.  The Ethernet ports are 
used in processing packet data and the USB ports are used for 
storage of statistics. The operating system is based on the 
OpenWRT distribution of Linux. 

One of the specifics of this embedded platform is that the 
Intel IXP425 XScale processor used in the Tofino platform 
does not have a floating point unit (FPU).  Instead, the floating 
point arithmetic used in the presented algorithm is emulated.  
Future work will include modification of the current 
implementation to use fixed point (integer) arithmetic. 
Depending on the implementation, a large performance gain 
may be achieved by using the SIMD Multiply-Accumulate 
unit coprocessor unit available on the IXP425. This 
coprocessor allows 16x32 multiply-accumulate operations to 
complete in a single cycle. 

While not of utmost concern in an academic setting, the 
implementation of the proposed algorithm on a hardware 
platform is relevant. Sommer and Paxson [7] argue that it in 

terms of capabilities and limitations it is important to obtain 
insight into the performance of an anomaly detection system 
from an operational point of view. The focused 
implementation is here at a very low level with an envisioned 
deployment just before some critical equipment, such as a 
Programmable Logic Controller (PLC). With the increasingly 
common usage of network based control systems and the 
current deployment of smart grid systems hundreds, thousands 
and possibly millions of devices will be interconnected. This 
makes the cost and reliability of an implemented hardware 
solution a relevant concern. In addition, the proposed 
hardware implementation of the embedded network security 
cyber sensor provides a performance baseline that might prove 
useful for comparison in future work. 

IV. DATA ACQUISITION AND FEATURE EXTRACTION 
This section describes the network data acquisition process 

and reviews the previously published window based feature 
extraction technique. 

A. Control System Experimental Test-Bed 
The hardware experimental test-bed system that was used for 

network data acquisition represents several aspects of an 
operational control system, such as operational control 
structure, control system network and hardware control of 
actual physical processes. RSView32, a Rockwell Software 
HMI product, provides an integrated component based 
interface for monitoring of the system behavior. The interface 
runs on a Windows XP laptop connected via an IPv4 network. 
A Moxa EDS-505A operated Ethernet switch provides 
network connectivity for the controller. This switch is 
mounted on a DIN-Rail and powered by the control system 
source. All network traffic to and from the controller is 
transported via the switch. Port mirroring has been enabled on 
the control traffic port connected to the HMI machine.  A 
Linux laptop with the tcpdump software application was 

 
 

Fig. 3 Photo of the TOFINO network security cyber sensor plugged-in into 
the test system. 

  

 
 

Fig. 4 Network data acquisition setup. A PLC is connected through a hub to 
the control PC station using an Ethernet network. 

  



attached to the mirror port allowing for network traffic 
capturing and monitoring. Finally, a second Linux-based 
laptop representing the attacker-compromised machine was 
attached to a third port. All anomalous traffic was instantiated 
from this machine.  

The control system itself consists of an Allen-Bradley 
MicroLogix 1100 PLC [27]. Attached to the PLC are 6 lighted 
buttons, 7 lights, 2 potentio-meters, 2 temperature sensors and 
a small electric fan constituting both digital and analog 
input/output points. All of the items are capable of being 
controlled individually from the PLC or directly by pressing a 
button. The experimental is depicted in Fig. 4. 

B. Feature Extraction from Packet Stream 
In a previous work of the authors, an Artificial Neural 

Network (ANN) based intrusion detection system was 
developed [13]. The ANN was trained on a sub-set of 
available network traffic features extracted by a window-based 
feature extraction technique applied directly to the stream of 
packets. This feature extraction technique is also utilized in the 
presented work. Here, the inherent time series nature of the 
packet stream data is described by a vector capturing the 
statistical behavior of the network traffic. The applied window 
segments the packet stream and monitors only a limited set of 
consecutive packets.  

As described in [13], a window of specified length �  is 
being shifted over the stream of network packets. At each 
position of the window a feature vector jr

�

 is computed from 
all the packets iv

�
 currently presented in the window. The next 

arriving packet is pushed into the window, while the last 
packet is removed from the end. The process of window based 
feature extraction is illustrated in Fig. 5. 

Table I summarizes the list of extracted window-based 
statistical features. This set of features was empirically 
selected based on the analysis of the recorded network traffic 
and the motivation to most accurately capture the time series 
nature of the packet stream. For further details and evaluation 
of the window based feature extraction refer to [13]. 

V. ONLINE LEARNING FOR ANOMALY IDS 
This section presents the learning algorithm for the fuzzy 

logic based anomaly detection for an embedded network 
security cyber sensor. First, rule extraction via adapted online 
NNC algorithm is presented. Next, the fuzzy rule based 
normal behavior modeling is explained. 

A. Rule Extraction via Online Clustering 
The proposed rule extraction algorithm takes into account 

the constrained computational resources of the available 
embedded network security cyber sensor. Other learning 
approaches, such as the previously published IDS-NNM 
algorithm [13], pursue offline learning approach once all 
training data have been acquired. However, such learning 
process is typically computationally unfeasible for the 
considered embedded devices, given the typically encountered 
network traffic density [21]. 

This paper proposes a new low-cost online rule extraction 
technique. The presented algorithm learns directly from the 
stream of incoming packets. In this manner, the need for 
storing all packet information into memory is eliminated. The 
final normal network behavior model is composed of a set of 
fuzzy rules. Each rule is extracted using an online version of 
the adapted NNC algorithm. The algorithm maintains 
additional information about the spread of data points 
associated with each cluster throughout the clustering process. 

Each cluster Pi of encountered normal network behavior is 
described by its center of gravity ic

�
, weight wi and a matrix of 

boundary parameters Mi. Hence: 
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Here, i is the index of particular cluster, j

ic is the attribute 

value in the jth dimension, j
ic and j

ic are the upper and lower 
bounds on the encountered values of the jth attribute for data 
points assigned to cluster Pi and n denotes the dimensionality 
of the input. The algorithm maintains a set of clusters � . 
Initially, the algorithm starts with a single cluster P1 
positioned at the first supplied training data point 1x

�
. This 

initial data point becomes available once the shifting window 
first fills with the incoming packets. 

Upon acquiring a new data point ix
�

 from the shifting 
window buffer, the set of clusters �  is updated according to 
the NNC algorithm. First, the Euclidean distance to all 

 
 

Fig. 5 Window based feature extraction process [13]. 
 

TABLE I 
SELECTED WINDOW-BASED FEATURES 

Num. of IP addresses Num. packets with 0 win. size 
Avg. interval between packets Num. packets with 0 data length 

Num. of protocols Average window size 

Num. of flag codes Average data length 
 

 

 
Fig. 6 Illustration of the non-symmetric input Gaussian fuzzy set j

iA . 
 



available clusters with respect to the new input feature vector 
ix
�

 is calculated. The nearest cluster Pa is identified. If the 
computed nearest distance is greater than the established 
maximum cluster radius parameter, a new cluster is created. 
Otherwise the nearest cluster Pa is update similarly as in (7): 
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Hence, the modified NNC algorithm also keeps track of the 

lower and upper bounds of the encountered input values in 
each dimension for every cluster. 

If the nearest cluster is further away than the established 
maximum cluster radius, a new cluster is created according to 
the standard NNC algorithm. 

B. Fuzzy Rule Based Behavior Modeling 
Once the rule extraction phase of the learning process is 

finalized (e.g. user decision, time limit, limit on the number of 
packets, etc.), the learning algorithm maintains a final set of 
clusters �  that describe the normal network communication 
behavioral patterns observed in the provided training data. In 
the next phase of the algorithm, each cluster is converted into 
a fuzzy logic rule. Each fuzzy rule describes the belonging of a 
particular sub-region of the multi-dimensional input space to 
the class of normal behavior. 

An n-dimensional cluster Pi is transformed into its associated 
fuzzy rule Ri as follows. Rule Ri is composed of n antecedent 
fuzzy sets njA j

i ...1, � . Each fuzzy set j
iA , located in the jth 

dimension of the input space, is modeled using a non-
symmetrical Gaussian fuzzy membership function with 
distinct left and right standard deviations. There are three 

parameters of the membership function, namely mean j
im  and 

the left and the right standard deviations j
i� , j

i� , as shown in 
Fig. 6. The parameter values are extracted based on the 
computed cluster Pi in the following manner: 
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Here, symbol � denotes the fuzziness parameter, which is 

used to adjust the spread of the membership functions. Using 
the minimum t-norm, the firing strength of fuzzy rule Ri is 
then computed as: 
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In this specific application, the output of the fuzzy rule is a 

singleton fuzzy set assigning the input pattern to the normal 
behavior class. Hence, in this special case the fired output of a 
particular fuzzy rule is actually its own firing strength )(x

iR
�

� . 
The final output decision y of the anomaly detection system is 
obtained by applying to maximum t-conorm to the output of 
all available rules: 
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...1

xxy
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Here, C denotes the number of extracted fuzzy rules. The 

value of the output y denotes the degree of belonging of input 
pattern x

�
to the class of normal behavior. By applying a crisp 

decision threshold the input pattern can be labeled as either 
anomalous or normal network behavior. 

 
(a)  (b) (c) 

 
 (d) (e) (f) 

 
Fig. 7 Parameter control analysis of the proposed anomaly detection algorithm. Figures show the number of generated clusters (a), correct classification rate (b), 
zoomed-in view of the classification rate (c), false positive rate (d), false negative rate (e), and zoomed-in view of the false negative rate (f) for different values 
of window size and maximum cluster radius parameters. 



VI. EXPERIMENTAL RESULTS 
This section first describes the acquired experimental 

datasets. Next, the suitable values of control parameters are 
found by analyzing their impact on the performance of the 
algorithm. Finally, the classification performance is evaluated 
on the acquired testing datasets. 

A. Experimental Datasets  
The Nmap [28] and Nessus [29] software utilities were used 

to create anomalous network traffic behavior in an attempt to 
emulate the probes of a cyber attacker. Nmap is a network 
scanning tool commonly used to identify hosts, scan ports, 
operating systems and to determine applications that are 
listening on open ports. It has many options and provides 
useful reconnaissance information for determining further 
courses of action. Nessus is a network scanning tool that 
provides auditing capabilities, vulnerability assessments and 
profiling information. In addition to general computer related 
assessments, control system specific vulnerabilities are 
available and were used on the previously described 
experimental test-bed. 

The simulated intrusion attempts include: ARP pings, SYN 
stealth scans, port scanning, open port identification and 
others. Cyber attacks ranged from long attacks composed of 
many packets to very short intrusion sequences. Two sets of 
experimental data have been recorded. The recorded training 
set is composed of 6 dataset with only normal network 
behavior. Overall, 60,661 packets of normal network traffic 
were acquired including specialized normal behavior such as 
system initialization and system component reconnection. The 
second set is a testing set composed of 11 datasets, which 
include simulated abnormal behavior. Overall 213,924 packets 
have been recorded. 

B. Parameter Tuning 
The performance of the presented anomaly detection 

algorithm depends on the values of several control parameters: 
i) window size of the window feature extraction, ii) maximum 
cluster radius for the online NNC algorithm, iii) the fuzziness 
parameter � of the fuzzy membership functions, and iv) the 
value of the crisp threshold for normal/anomaly traffic 
labeling.  

The correct classification, the false negative and the false 
positive rates were used as performance measures. The correct 
classification rate is the percentage of the overall correctly 
classified data instances. The false negative rate is the ratio of 
incorrectly labeled normal behavior inputs and the overall 
number of normal behavior instances. The false positive rate is 
the ratio of incorrectly label anomalous inputs and the overall 
number of anomalies. 

Fig. 7 and Fig. 8 depict the performance for different values 
of window size, maximum cluster radius and the crisp decision 
threshold. Fig. 7(a) shows the number of generated clusters. 
This number monotonically increases with the decreasing 
maximum cluster radius and reaches its maximum for window 
size around 6. The more clusters generated, the more detailed 
the model. However, a more detailed model increases the 
chance of overfitting and requires additional computational 
time. From Fig. 7(b)-(f) it can be seen that the classification 
performance primarily depends on the window size. Small 
values of window size (e.g. 2, 4 or 6) generate increased 
number of false negatives with non-zero false positive rate 
(~4%). From the detailed view in Fig. 7(c) and Fig. 7(f) it is 
apparent that there is a slight gradient towards smaller values 
of window size. Hence, values of window size around 10 seem 
to yield optimal results for the given datasets.  

 
(a)  (b) (c) 

 
Fig. 8 Parameter control analysis of the proposed anomaly detection algorithm. Figures show the correct classification rate (a), the false negative rate (b), and 
the false positive rate (c) for different values of window size and the sensitivity threshold. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Anomaly detection performance on dataset 1 for values of parameter 
� = 0.5  (a), 1 (b), and 2.0 (c). 



Fig. 8 investigates the influence of the crisp decision 
threshold and the window size. High rates of both false 
positives and negatives can be again seen for smaller values of 
window size and for smaller values of decision threshold. The 
figures demonstrate that with window size of approximately 
20 packets, the algorithm is least sensitive to the value of the 
crisp decision threshold. This is likely to be where the best 
separation between normal and anomaly behavior is obtained. 

The influence of the fuzziness parameter of the membership 
function is briefly demonstrated in Fig. 9. Here, the response 
of the algorithm applied to dataset 1 (thin line is algorithm 

output, thick line marks known intrusions) is plotted. It can be 
observed that smaller values of the fuzziness parameter 
produce narrower membership functions, which tend to reject 
more instances of more unusual normal behavior. However, 
larger values of the fuzziness parameters would eventually 
lead to increased false positive rate as anomaly instances 
would become less distinct from the normal behavior.  

In summary, the following parameters have been selected as 
the optimal values for the acquired experimental data: window 
size = 20, maximum cluster radius = 0.01, the fuzziness 
parameter � = 2.0, and crisp threshold = 0.9. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10 Anomaly detection performance of the proposed algorithm on segments of packets from datasets 2 (a), 3 (b), and 4 (c). Thin line represents system 
decision, thick line denotes the known anomalous behavior. 

 

 
TABLE II 

CLASSIFICATION PERFORMANCE OF THE FUZZY LOGIC BASED ANOMALY DETECTION ALGORITHM ON DIFFERENT DATASETS 
 

Datasets Number of Packets Classification 
Rate False Negatives False Positives Processing Time  

per Packet 

Data 1 35,112 99.702 % 1.485% 0.000 % 0.264 ms 
Data 2 29,147 99.586 % 1.448 % 0.000 % 0.217 ms 
Data 3 34,148 99.517 % 1.251 % 0.000 % 0.206 ms 
Data 4 13,131 99.313 % 0.715 % 0.000 % 0.206 ms 
Data 5 10,444 99.299 % 0.721 % 0.000 % 0.206 ms 
Data 6 5,401 99.053 % 1.006 % 0.000 % 0.196 ms 
Data 7 7,926 99.646 % 0.369 % 0.000 % 0.198 ms 
Data 8 23,134 99.307 % 0.704 % 0.000 % 0.201 ms 
Data 9 24,388 99.531 % 0.502 % 0.000 % 0.210 ms 

Data 10 15,431 99.422 % 0.701 % 0.000 % 0.201 ms 
Data 11 15,565 99.180 % 1.002 % 0.000 % 0.226 ms 

Sum / Average 213,924 99.360 % 0.900 % 0.000 % 0.212 ms 

 



C. Classification Performance Evaluation 
The fuzzy logic based anomaly detection algorithms was 

applied to the 11 acquired testing datasets. The algorithm was 
trained on the 6 training datasets composed of 60,661 normal 
behavior packets. The training took 11.946 s resulting in a 
potentially maximum processing speed of over 5,000 packets 
per second. Altogether 71 fuzzy rules were extracted. 

The classification performance is summarized in Table II. 
Here, the classification rate, the false negative and the false 
positive rates are depicted for each dataset and the average 
values are calculated. It can be observed that the algorithm 
maintained 0% false positive rate and 0.9% average false 
negative rate. Hence, no intrusion attempts were missed, while 
maintaining low false negative rate. 

Fig. 10 visually demonstrates the classification of datasets 2, 
3 and 4. The thin line denotes the prediction of the anomaly 
detection system and the thick line above the system response 
marks the known occurrence of the anomalous behavior. It can 
be seen that the proposed anomaly detection system responded 
well to both long and short intrusion attempts. 

VII. CONCLUSION 
This paper presented a novel fuzzy logic based anomaly 

detection algorithm for embedded network security cyber 
sensors. The anomaly detection algorithm was specifically 
designed to allow for both fast learning and fast classification 
on the constrained computational resources of the embedded 
device. The algorithm extracts fuzzy rules using an adapted 
version of the online nearest neighbor clustering algorithm 
directly to the stream of packets. 

The proposed algorithm was tested on an experimental test-
bed mimicking the environment of a critical infrastructure 
control system with emulated probes of a cyber attacker. The 
control parameters of the presented algorithm were tuned via 
performance analysis. The final performance evaluation was 
performed on a set of 11 test datasets with over 200,000 
packets with a wide range of anomalous network behavior. 
The experimental analysis yielded 99.36% correct 
classification rate with 0.0% false positive rate and 0.9% false 
negative rates.  

The primary direction for future work includes 
incorporating type-2 fuzzy logic into the algorithm design, 
fusing the anomaly-detection based system with intrusion 
signatures to improve the classification performance and 
deploying the algorithm in real operational settings. 

REFERENCES 
[1] D. Yang, A. Usynin, J. W. Hines, “Anomaly-Based Intrusion Detection 

for SCADA Systems,” in Proc. of 5th Intl. Topical Meeting on Nuclear 
Plant Instrumentation, Control and Human Machine Interface 
Technologies (NPIC&HMIT 05) , Albuquerque, NM, Nov 12-16, 2006. 

[2] H. S. Kim, J. M. Lee, T. Park, W. H. Kwon, “Design of networks for 
distributed digital control systems in nuclear power plants,” Intl. Topical 
Meeting on Nuclear Plant Instrumentation, Controls, and Human-
Machine Interface Technologies (NPIC&HMIT 2000), Washington, DC, 
November 2000. 

[3] Dana A. Shea, “Critical Infrastructure: Control Systems and the Terrorist 
Threat,” Report for Congress RL31534, February, 2003. 

[4] C. G. Rieger, D. I. Gertman, M. A. McQueen, “Resilient Control 
Systems: Next Generation Design Research,” in Proc. 2nd IEEE Conf. on 
Human System Interactions, Catania, Italy, pp. 632-636, May 2009. 

[5] J. P. Anderson, Computer security threat monitoring and surveillance, 
Technical report, James P. Anderson Co, 1980. 

[6] D. E. Denning, “An Intrusion Detection Model,” in IEEE Trans. on 
Software Engineering,vol. SE-13, pp. 222-232, February 1987.  

[7] R. Sommer, V. Paxson, “Outside the Closed World: On Using Machine 
Learning For Network Intrusion Detection,” in Proc. of IEEE Symp. on 
Security and Privacy, Oakland, California, pp. 305-316, 2010. 

[8] V. Chandola, A. Banerjee, V. Kumar, “Anomaly Detection: A Survey,” 
Technical Report, University of Minnesota, 2007. 

[9] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools 
and Techniques, Morgan Kaufmann Publishers, 2005. 

[10] Z. Zhang, J. Li, C. Manikopulos, J. Jorgenson, J. Ucles, “HIDE: a 
Hierarchical Network Intrusion Detection System Using Statistical 
Preprocessing and Neural Network Classification,” in Proc. IEEE 
Workshop on Information Assurance and Security, 2001. 

[11] J. Ryan, M. Llin, R. Miikkulainen, “Intrusion Detection with Neural 
Networks, ” in Advances in Neural Information Processing Systems 10, 
Cambridge, MA, MIT Press, 1998. 

[12] H. Debar, B Dorizzi, “An Application of a Recurrent Network to an 
Intrusion Detection System,” in Proc. of the International Joint 
Conference on Neural Networks, pp. 78-83. 

[13] O. Linda, T. Vollmer, M. Manic,“Neural Network Based Intrusion 
Detection System for Critical Infrastructures,” in Proc. Int. Joint INNS-
IEEE Conf. on Neural Networks, Atlanta, Georgia, June 14-19, 2009. 

[14] W. Hu, Y. Liao, V. R. Vemuri, “Robust Anomaly Detection Using 
Support Vector Machines,” in Proc. International Conference on 
Machine Learning, 2003. 

[15] G. Stein, B. Chen, A. S. Wu, K. A. Hua, “Decision Tree Classifier For 
Network Intrusion Detection With GA-based Feature Selection,” in  
Proc. of the 43rd ACM Southeast Conference, Kennesaw, GA, March 
2005. 

[16] F. Gonzalez, D. Dasgupta, J. Gomez, M. Kaniganti, “An Evolutionary 
Approach to Generate Fuzzy Anomaly Signatures,” in Proc. the IEEE 
Information Assurance Workshop, June 2003. 

[17] J. Gomez, D. Dasgupta, F. Gonzalez, “Detecting Cyber Attacks with 
Fuzzy Data Mining Techniques,” in Proc. of the Workshop on Data 
Mining for Counter Terrorism and Security, 3rd SIAM Conference on 
Data Mining, San Francisco, CA, May, 2003. 

[18] S. Zhong, T. Khoshgoftaar, N. Seliya, “Clustering-based network 
intrusion detection,” in Intl. Journal of Reliability, Quality and Safety, 
Vol. 14, No. 2, 2007, pp. 169-187. 

[19] Q. Wang, V. Mehalooikonomou, “A Clustering  Agorithm for Intrusion 
Detection,” in SPIE Conference on Data Mining, Intrusion Detection, 
Information Assurance, and Data Networks Security, Orlando, Florida, 
USA, 2005. 

[20] L. Portnoy, E. Eskin, S. Solfo, “Intrusion detection with unlabeled data 
using clustering,” in Proc. Of ACM CSS Workshop on Data Mining 
Applied Security, Philadelphia, PA, November 5-8, 2001. 

[21] R. Sommer, V. Paxson, N. Weaver, “An architecture for exploiting 
multi-core processor to parallelize network intrusion prevention,” 
Concurrency Computation: Practice and Experience, 21: 1255-1279, 
2009. 

[22] Tofino webpage [URL], Available: http://www.tofinosecurity.com, from 
October 2010. 

[23] L. A. Zadeh, “Fuzzy Sets,” in Information and Control, vol. 8, pp. 338-
353, 1965. 

[24] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction 
and New Directions, Upper Saddle River, NJ: Prentice Hall PTR, 2001. 

[25] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and 
Applications, Prentice Hall, New York, 1995. 

[26] Intel Corporation, Datasheet—Intel IXP42X Product Line of Network 
Processors and IXC1100 Control Plane Processor, June 2007. 

[27] Allan Bradley PLC 5 Controller webpage, Available: 
http://www.ab.com/programmablecontrol/plc/, from October 2010. 

[28] Nmap webpage [URL], Available: http://nmap.org, from October 2010. 
[29] Nessus webpage [URL], Available: http://www.nessus.org.org/nessus/, 

from October 2010. 

 


